5.1 Representation of Integers

- Natural numbers? Whole numbers?
- Integers
- Integers are used to describe:
 1. debits & credits
 2. profits & losses
 3. changes in prices
 4. temperature
 5. Golf under par (-18)

Example 1

Example 2
5.1 Representation of Integers

DEF The Integers page 284
- The positive integers are the natural numbers.
- The negative integers are the numbers -1, -2, -3, ...
- where \(-r\) is defined by the equality
 \(s + (-s) = (-s) + s = 0\)
- The integer 0 is neither positive nor negative and
 has the property \(0 + n = n + 0 = n\) for every
 integer \(n\). The integers consist of the positive
 integers, the negative integers, and zero.

5.1 Representation of Integers

Mail-Time
- Representation of Integers
 - "Postman Delivers"
 - Checks +
 - Brings addition
 - Bills -
 - Takeaway subtraction
- Are we better Off
- + By how much?
- Or worse off?
- - by how much?

1. Postman delivers 1 check of $300.
2. Postman delivers 1 bill $25.
3. Postman brings 6 bills
 for $3.
4. Postman takes away 1
 bill for $3.
5. Postman takes away 3
 bills for $4 each.

5.1 Representation of Integers

THM. The Negative of the Negative of
an Integer page 289
- For every integer \(n\), \(-(-n) = n\)

DEF Absolute Value of an Integer
- Distance from zero, always positive
5.2 Addition and Subtraction of Integers

- Remember
 \[a = n(A), \ b = n(B), \ \text{and} \ A \cap B = \emptyset, \ \text{then} \ a + b \ \text{was defined as} \ n(A \cup B). \]
- Ex. 1
- \[9 + (-3) = 5 \]

5.2 Addition and Subtraction of Integers

- THM: Adding Integers pg. 296
 - Let \(m \) and \(n \) be positive integers so that \(-m\) and \(-n\) are negative. Then the following are true:
 - \((-m) + (-n) = -(m + n)\)
 - If \(m > n \), then \(m + (-n) = m - n \)
 - If \(m < n \), then \(m + (-n) = -(n - m) \)
 - \(n + (-n) = (-n) + n = 0 \)

5.2 Addition and Subtraction of Integers

- THM: Properties of the Addition of Integers page 297
 - Let \(m, n, \) and \(r \) be integers. Then the following hold.
 - Closure Property \(m + n \) is an integer
 - Commutative Property \(m + n = n + m \)
 - Associative Property \(m + (n + r) = (m + n) + r \)
 - Additive identity \(0 + m = m = 0 \)
 - Additive inverse \((-m) + m = m + (-m) = 0 \)
5.2 Addition and Subtraction of Integers

- Draw a number-line diagram to illustrate each of these calculations.
 - (-3) + 7
 - (-5) + (-2)
 - 3 + (-6)
 - 5 + (-5)

5.2 Addition and Subtraction of Integers

- THM: The Law of Trichotomy page 331
 If \(a \) and \(b \) are any two integers, then precisely one of these three possibilities must hold:
 \[a < b \quad \text{or} \quad a = b \quad \text{or} \quad a > b \]
 Example:
 a. \(15 ? 101 \) c. \(3 ? (-3) \)
 b. \(-8 ? -9 \) d. \(0 ? -8 \)

5.2 Addition and Subtraction of Integers

- Subtraction using colored counters page 302
 - \((-3) - 7 = -10\)
 - You have \((-3)\) until you remove 7 black, then you have \((-10)\)
5.2 Addition and Subtraction of Integers

- $5 - (-4) = 9$ or $5 = (-4) + 9$

THM: Closure Property for the Subtraction of Integers page 306

The set of integers is closed under subtraction.

5.3 Multiplication and Division of Integers

- Multiplication is repeated ADDITION
- THM: THE RULE OF SIGNS page 317
 - Let m and n be positive integers so that $-m$ and $-n$ are negative integers. Then the following are true:

 \[
 m \cdot (-n) = -(mn) \\
 (-m) \cdot n = -(mn) \\
 (-m) \cdot (-n) = mn \\
 a \cdot 0 = 0 \cdot a = 0 \text{ for any integer } a
 \]
5.3 Multiplication and Division of Integers

| THM: Multiplication Properties of Integers page 319 |
| Closure Property |
| Commutative Property |
| Associative Property |
| Multiplicative Property of One |
| Multiplicative Property of Zero |
| **GIVE AN EXAMPLE OF EACH OF THE ABOVE PROPERTIES.** |

Example: Describe a mail-time situation that illustrates -44.

- a. At mail-time, you are delivered a check for $44.
- b. At mail-time, you are delivered a bill for $44.
- c. At mail-time, you are delivered a check for $44 and a bill for $44.

Example: The letter carrier takes away 4 checks for $16 each.

- a. $4 + 16$
- b. 4×16
- c. $(-4) \times 16$
- d. $4 \times (-16)$
5.3 Multiplication and Division of Integers

- THM: Rule of Signs for Division of Integers page 322
 - Let \(m \) and \(n \) be positive integers so that \(-m \) and \(-n \) are negative integers and suppose that \(n \) divides \(m \). Then the following are true:
 - \(m ÷ (-n) = -(m ÷ n) \)
 - \((-m) ÷ n = -(m ÷ n) \)
 - \((-m) ÷ (-n) = m ÷ n \)

6.1 The Basic Concepts of Fractions and Rational Numbers

A. *Pairs to represent & check for rational number comprehension.* (activity)
1. Size whole parts
2. What is \(\frac{1}{2} \) of \(\frac{2}{3} \)?
 - Leads into fraction multiplication.
3. How many \(\frac{1}{8} \) in \(\frac{2}{7} \)?
 - Leads into fractions division.
6.1 The Basic Concepts of Fractions and Rational Numbers

4. What is \(\frac{2}{4} + \frac{1}{4} - \frac{1}{3} \)?
 - Leads into like and unlike fractions in addition.

5. What is \(\frac{1}{3} - \frac{1}{4} \)?
 - Leads in to like and unlike fractions in subtraction.

6.1 The Basic Concepts of Fractions and Rational Numbers

- **DEF. Fractions page 347**
 - First introduce in measurement problems to express a quantity less than a whole unit.

- The Number Line Model page 349
 - Game “Fraction Wars”

6.1 The Basic Concepts of Fractions and Rational Numbers

- **C. Fraction Strips**

6.1 The Basic Concepts of Fractions and Rational Numbers

PROPERTY The Fundamental Law of Fractions
Let \(\frac{a}{b} \) be a fraction. Then
\[
\frac{a}{b} = \frac{an}{bn}, \text{ for any integer } n \neq 0.
\]
Example
\[
\frac{1}{2} = \frac{1 \cdot 3}{2 \cdot 3} = \frac{3}{6}
\]

6.1 The Basic Concepts of Fractions and Rational Numbers

THM The Cross-Product Property of Equivalent Fractions
The fractions \(\frac{a}{b} \) and \(\frac{c}{d} \) are equivalent if and only if, \(ad = bc \).
Example
a) \[
\frac{23}{47} = \frac{2231}{4559}
\]

6.1 The Basic Concepts of Fractions and Rational Numbers

DEF. Fractions in Simplest Form
A fraction \(\frac{a}{b} \) is in simplest form if \(a \) and \(b \) have no common divisor larger than 1 and \(b \) is positive.
Method 1: Divide successively by common factors.
EX.
\[
\frac{240}{360}
\]
DEF. *Fractions in Simplest Form (cont’d)*

Method 2: Divide \(a \) and \(b \) by GCD \((a, b) \)

\[\frac{28}{40} \]

Method 3:
Divide by the common factors in the prime factorization of \(a \) and \(b \).

\[\frac{-45}{135} \]

Method 4: Use a fraction calculator.

\[\frac{117}{-468} \]

Common Denominators

\[\frac{3}{4} + \frac{5}{8} + \frac{2}{3} \]

\[\frac{15}{34} + \frac{12}{51} \]
6.1 The Basic Concepts of Fractions and Rational Numbers

DEF. Rational Numbers (end or repeat)
A rational number is a number that can be represented by a fraction \(\frac{a}{b} \), where \(a \) and \(b \) are integers, \(b \neq 0 \). Two rational numbers are equal if, and only if, they can be represented by equivalent fractions.

DEF. Order Relation on the Rational Numbers
Let two rational numbers be represented by the fractions \(\frac{a}{b} \) and \(\frac{c}{d} \), with \(b \) and \(d \) positive. Then \(\frac{a}{b} \) is less than \(\frac{c}{d} \) written \(\frac{a}{b} < \frac{c}{d} \), if, and only if \(ad < bc \).

Comparing Rational Numbers

Example:

1. \(\frac{3}{4} \) and \(\frac{2}{5} \)
2. \(\frac{15}{29} \) and \(\frac{6}{11} \)
3. \(\frac{2106}{7047} \) and \(\frac{234}{783} \)
4. \(-\frac{10}{13} \) and \(-\frac{22}{29} \)

6.2 The Arithmetic of Rational Numbers

DEF: Addition of Rational Numbers page 365 (LIKE FRACTIONS)
Let two rational numbers be represented by fractions \(\frac{a}{b} \) and \(\frac{c}{d} \) with a common denominator. Then their sum of the rational numbers is given by

\[
\frac{a}{b} + c = \frac{a + b}{b}
\]
6.2 The Arithmetic of Rational Numbers

Draw
\[
\frac{1}{4} + \frac{2}{4}
\]

6.2 The Arithmetic of Rational Numbers

Addition of UNLIKE FRACTIONS

Draw
\[
\frac{2}{3} + \frac{1}{2}
\]

6.2 The Arithmetic of Rational Numbers

Example

1. \[
\left(\frac{3}{4} \cdot \frac{5}{6} \right) - \frac{2}{3}
\]
2. \[
\frac{3}{8} + \frac{-7}{24}
\]
6.2 The Arithmetic of Rational Numbers

- Draw \(\frac{3}{8} \) what is it as an improper fraction?
- Give a mixed number for \(\frac{355}{133} \)
- Give a mixed number for \(\frac{-15}{4} \)
- Compute \(\frac{3}{4} + \frac{2}{5} \)

6.2 The Arithmetic of Rational Numbers

- Which of the following are Proper Fractions?

\[
\begin{align*}
\frac{1}{5} &\quad \frac{8}{7} &\quad \frac{2}{2} &\quad \frac{4}{7} &\quad \frac{15}{17}
\end{align*}
\]

6.2 The Arithmetic of Rational Numbers

- DEF: Subtraction of Rational Numbers
 page 371

Let \(\frac{a}{b} \) and \(\frac{c}{d} \) be rational numbers.

Then \(\frac{a}{b} - \frac{c}{d} = \frac{e}{f} \) if, and only if,

\[
\frac{a}{b} - \frac{c}{d} = \frac{e}{f}
\]
6.2 The Arithmetic of Rational Numbers

Example
1. \[\frac{4}{5} \div \frac{2}{3} \]
2. \[8 \frac{1}{3} \div 4 \frac{3}{5} \]

DEF: Multiplication of Rational Numbers
page 373
Let \(\frac{a}{b} \) and \(\frac{c}{d} \) be rational numbers. Then their product is given by:
\[\frac{a}{b} \cdot \frac{c}{d} = \frac{ab}{cd} \]

Examples (decimal answers are not acceptable.)
1. \[\frac{5}{8} \div \frac{2}{3} \]
2. \[3 \frac{1}{7} \div 5 \frac{1}{4} \]
6.2 The Arithmetic of Rational Numbers

THM: The Invert and Multiply Algorithm for Division of Fractions and Rational Numbers.
Page 378
\[
\frac{a}{b} : \frac{c}{d} = \frac{a}{d} \cdot \frac{b}{c}, \text{ where } c \neq 0.
\]

DEF: Reciprocal of a Rational Number
- The reciprocal of a nonzero rational number \(\frac{c}{d} \) is \(\frac{d}{c} \).

Example
1. \(\frac{3}{4} \div \frac{1}{8} \)
2. \(\frac{4}{6} \div \frac{1}{3} \)

FRACTION WARS

Purpose: Reinforce estimation and comparison of fractions in a game format.
- Play 10 rounds of each goal with your partner.
- GOAL 1: Form a fraction by placing the card with the smaller number in the numerator. Player with the smaller fraction is the winner.
- GOAL 2: Form a fraction by placing the card with the larger number in the numerator. Player with the larger fraction is the winner.
- GOAL 3: Place the first card in the numerator and the second in the denominator. Player with the fraction whose value is closest to 2 is the winner.
6.3 The Rational Number System

- Density page 391
 - There are infinitely many rational numbers between two rational numbers.
 - Find at least two fractions between:

\[
\frac{5}{6} \text{ and } \frac{3}{7} \quad \frac{12}{14} \text{ and } \frac{10}{15}
\]

CONCEPT MAPS

- Complete the following in your groups:
 - Chapter 5. Whole-Number Arithmetic Concept Map
 - Chapter 6. Fraction Concept Map